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Large time behaviour for a class of turbulence
models—stochastic Burgers equations
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UK
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Abstract. The aim of this paper is to investigate large time behaviour, i.e. stability and growth
bounds, of the solutions for a class of stochastic Burgers equations. The analysis is based on some
robustness analysis involved with an infinite-dimensional stochastic evolution equation. Various
sufficient conditions for a stochastic Burgers equation are obtained to ensure its asymptotic
properties. Lastly, several examples are given to illustrate our theory.

0. Introduction

An important role in fluid dynamics is played by the followingBurgersequation, see Burgers
[4],

∂tu(t, x) = ν∂2
xxu(t, x)+ u(t, x)∂xu(t, x) (0.1)

where u(t, x) is the velocity field andν is the viscosity. As Burgers emphasized in
the introduction of his book [4], this equation represents an extremely simplified model
describing the interaction of dissipative and nonlinear inertial terms in the motion of the
fluid. A clear discussion on the physical problems connected with Burgers equation can be
found in [4]. On the other hand, in some sense it is known, however, that the equation is not
a good model for turbulence. It does not display any chaotic phenomena; even when a force
is added to the right-hand side and all solutions converge to a unique stationary solution as
time goes to infinity. The situation, however, is quite different when the force is random.
In particular, a random perturbation may help to select interesting invariant measures.
Translational invariance is preserved when (0.1) is perturbed by additive stochastic processes
stationary in space and time. Several authors have indeed suggested using the stochastic
Burgers equation as a simple model for turbulence: Chamberset al [5], Choi et al [6] and
Dah-Teng Jeng [11].

Roughly speaking, in this paper we hopefully consider the following stochastic evolution
equation forν > 0:

du(t, x) =
(
ν
∂2u(t, x)

∂2x
+ 1

2

∂

∂x
u2(t, x)

)
dt + g(t, u(t, x))dBt(x) t > 0, x ∈ (0, 1)

u(t, 0) = u(t, 1) = 0 t > 0

u(0, x) = u0(x) x ∈ [0, 1] (0.2)
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whereu0(x) is a certain given initial function andBt denotes the Gaussian process defined
over a certain probability space(�,F ,Ft , P ), with continuous correlation function

E(Bt(x), Bt ′(x
′)) = t ∧ t ′q(x, x ′) (0.3)

wherea ∧ b = min{a, b}.
The existence, uniqueness and regularity of a sample solution of (0.2) were investigated

by Bertini et al [2], Brzézniak et al [3] and Da Prato and Gatarek [9]. In the meantime,
the asymptotic behaviour of the infinite-dimensional stochastic evolution equation was
considered by many authors. Concerning the stability of the stochastic evolution equation,
we should notice the fact that lots of authors mainly pay attention to thepth moment
stability. In particular we mention Curtain [8], Haussmann [13], Ichikawa [14] and Liu [16]
among others. On the other hand, under a number of practical circumstances, we are more
concerned with the almost certain stability for a stochastic system. We should also mention
Mao’s work [17] on the almost certain stability of then-dimensional stochastic differential
equation with respect to a semimartingale.

In this paper, we shall develop a Liapunov functional approach for almost certain
stability analysis, and growth bound criteria pertaining to the stochastic Burgers
equation (0.2). For simplicity, we shall concern ourselves with the one-dimensional
stochastic Burgers equation although it is possible to extend most results to the multi-
dimensional equation. Specifically, section 1 contains some mathematical preliminaries
for our purposes, such as an infinite-dimensional stochastic integral with respect to aQ-
Wiener process and the precise definition of the solution of the stochastic Burgers equation.
Section 2 contains the main results of the paper. Based on a basic robustness analysis,
the criteria for almost certain asymptotic stability of the stochastic Burgers equation are
obtained in theorem 2.1 and theorem 2.2. The growth rate estimates of unbounded solutions
to the stochastic equation are also established in theorem 2.3 when stability may be invalid.
Finally, section 3 is totally devoted to considering several examples which illustrate how to
apply our theory to practical stochastic Burgers equations.

1. Preliminaries

The purpose of this section is to introduce the Hilbert space techniques used to deal with
our stochastic Burgers equation. We use the idea from [10]. LetH be the closure of the
set{u ∈ C∞0 ([0, 1], R): u(0) = u(1) = 0} in theL2 norm |u| = (u, u) 1

2 ,

(u, v) =
∫ 1

0
u(x)v(x) dx. (1.1)

V is the closure of the set{u ∈ C∞0 ([0, 1], R): u(0) = u(1) = 0} in the norm|u| + ‖u‖,
where‖u‖ = ((u, u)) 1

2 ,

((u, v)) =
(
∂u

∂x
,
∂v

∂x

)
. (1.2)

BothH andV are Hilbert spaces with their scalar products(·, ·), (·, ·)+((·, ·)), respectively.
We denote the self-adjoint extension of the operator−1 in H byA and the orthonormal

basis of its eigenfunctions with the corresponding eigenvaluesλk ↑ +∞ by {ek}.
We denote the space dual toV by V ′, with the duality extending the scalar product in

H . In general, we define the spacesHr for r > 0 by

Hr =
{
u ∈ H :

∞∑
k=1

λrku
2
k <∞

}
(1.3)
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where uk = (u, ek) (so H = H 0, V = H 1). The elements of the dual spacesH−r

(V ′ = H−1) are characterized by

|u|H−r :=
∞∑
k=1

λ−rk u
2
k <∞ (1.4)

whereuk = 〈ek, u〉, and〈·, ·〉 denotes the relation of duality between the spacesV andV ′,
so thatu =∑∞k=1 ukek, the limit being taken inH−r .

The operatorA can be extended to a continuous linear operator, still denoted byA,
from V into V ′ by 〈v,Au〉 = ((v, u)) for u, v ∈ V . We also define

b(u, v, z) =
∫ 1

0
u(x)

∂v

∂x
(x)z(x) dx = (〈u,∇〉v, z)

whenever the integrals make sense. Note that foru, v, z ∈ V we haveb(u, v, z) =
−b(u, z, v), henceb(u, v, v) = 0. We also have the following well known inequality
for b(u, v, z) and we list them here for reference:

|b(u, v, z)| 6 c‖u‖‖v‖‖z‖ (1.5)

|b(u, v, z)| 6 c|u|‖v‖|Az| (1.6)

|b(u, v, z)| 6 c‖u‖|v||Az| (1.7)

for suitableu, v, z and constantc. The inequality (1.5) allows us to define aV ′-valued
bilinear formB(u, v) by 〈z, B(u, v)〉 = b(u, v, z).

Let us now introduce the following notations for the path spaces:

LT = L∞(0, T ;H)
LT = L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ C(0, T ;H)
L =

⋂
T<∞
LT . (1.8)

Definition 1.1. Let K be a separable Hilbert space. A stochastic processWt , t > 0, in
Hilbert spaceK is aQ-Wiener process defined on(�,F , P ) if:

(a)Wt is a square integrable process andEWt = 0 for all t > 0;
(b) Cov[Wt −Ws ] = (t − s)Q, Q ∈ L(K) is a non-negative nuclear operator;
(c) Wt has continuous sample paths;
(d) Wt has independent increments;

whereL(K) = L(K,K) is the family of all bounded linear operators fromK into itself,
equipped with the usual operator norm topology. The operatorQ is the incremental
covariance operator of the Wiener processWt .

Let Ft [W·] be theσ -field generated byWs , 06 s 6 t ; thenWt is a martingale relative
to Ft [W·]. We have the following representation of a Wiener process.

Proposition 1.1. Let Wt be a Wiener process inK with incremental covariance operator
Q, then

Wt =
∞∑
i=1

βi(t)ei (1.9)

where{ei} is an orthonormal set of eigenvectors ofQ, βi(t) are mutually independent real
Wiener processes with incremental covarianceλi > 0, Qei = λiei and trQ =∑∞i=1 λi .
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The stochastic integral
∫ t

0 g(s) dWs is defined as follows. First we introduce the space
of integrands. For any Hilbert spaceU , we denote byU(U) the space of all stochastic
processes

g(t, ω) : [0, T ] ×�→ L(K,U)
such that

E

(∫ T

0
‖g(t)‖2

L(K,U) dt

)
<∞

whereL(K,U) is the space consisting of all bounded linear operators fromK into U ,
equipped with the usual operator norm topology, and for allk ∈ K, g(t)k is a U -valued
stochastic process measurable with respect to the filtrationFt .

The stochastic integral
∫ t

0 g(s) dWs ∈ U is defined for allg ∈ U(U) by∫ t

0
g(s) dWs = L2− lim

n→∞

n∑
i=1

∫ t

0
g(s)ei dβi(s). (1.10)

Roughly speaking, in this paper we shall actually study a class of much more extended
stochastic evolution equations as follows fort > t0 > 0:

dYt (ω) = [−νAYt(ω)+ f (t, Yt (ω))] dt + g(t, Yt (ω)) dWt. (1.11)

In particular, we give the following.

Definition 1.2. Let f (t, y) : R+ × V → V ′, g(t, y) : R+ × V → L(K,H) be two
Borel measurable functions such that for allt ∈ R+ and y ∈ V , 〈y, f (t, y)〉 = 0, and
g(t, Yt ) ∈ U(H). A Hilbert space-valued stochastic processYt with almost sure paths inL
is a solutionof the stochastic Burgers equation (1.11) if, fort > t0 > 0,

Yt (ω) = Yt0(ω)+
∫ t

t0

[−νAYs(ω)+ f (s, Ys(ω))] ds +
∫ t

t0

g(s, Ys(ω)) dWs (1.12)

holds as an identity inV ′ (the first integral is understood in the sense of Bochner).

As a consequence, we are now in the position to formulate (0.2) as a stochastic evolution
equation in the Hilbert spaceV ′:

dYt = [−νAYt + f (t, Yt )] dt + g(t, Yt ) dWt (1.13)

wheref (t, Yt ) = 1
2(∂/∂x)Y

2
t (x) andg(t, y):R+ × V → H is a Borel measurable function

with g(t, Yt ) ∈ U(H). Wt is anH -valued Wiener process with the covariance operatorQ

such that for allv(x) ∈ H

(Qv)(x) =
∫ 1

0
q(x, y)v(y)dy.

2. The main results

In this section, we shall try to obtain our main results of the stochastic Burgers equation.
Owing to the fact that we are restricting ourselves to stability analysis, we assume that the
equation has a unique global solution which is denoted byYt (Yt0), or Y (t, Yt0).
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Theorem 2.1. Let Yt (ω) be a global soluton of (1.12). Assume there exist a real function
ψ(t) > 0 and a non-negative constantλ > 0 such that:

‖g(t, y)‖2
L(K,H) 6 ψ(t) e−2λt y ∈ V, t ∈ R+ (2.1)

whereψ(t) satisfies for anyδ > 0

lim
t→∞

ψ(t)

eδt
= 0.

Then we have that the solution of equation (1.12) is exponentially stable almost certainly.
Moreover,

lim sup
t→∞

log |Yt |
t

6 −νλ0 a.s. (2.2)

whereλ0 = infy∈V (|∇y(x)|2/|y(x)|2) > 0.

Proof. For simplicity, we supposeY0 = 0. For anyδ > 0 small enough, we define a
continuous functional on the spaceV ′, V (v, t)(·) = e2(λ−δ)t 〈v, ·〉2, wheret > 0, v ∈ V and
〈·, ·〉 denotes the canonical pairing betweenV andV ′. Using It̂o’s formula, we can derive
that

V (ei, t)(Yt ) 6
∫ t

0
{2(λ− δ) e2(λ−δ)s〈ei, Ys〉2+ 2 e2(λ−δ)s〈ei, Ys〉〈ei,−νAYs + f (s, Ys)〉

+e2(λ−δ)s‖g(s, Ys)‖2
L(K,H) tr[(ei ⊗ ei) ·Q]} ds

+2
∫ t

0
e2(λ−δ)s〈ei, Ys〉(ei, g(s, Ys) dWs) (2.3)

where {ei} ∈ V is the orthonormal basis of the eigenfunctions of the operatorA with
corresponding eigenvaluesλi ↑ +∞. Taking account ofYt ∈ L a.s., we derive almost
certainly

V (Yt , t)(Yt ) 6
∫ t

0
{2(λ− δ) e2(λ−δ)s |Ys |2+ 2 e2(λ−δ)s〈Ys,−νAYs + f (s, Ys(ω))〉

+e2(λ−δ)s‖g(s, Ys)‖2
L(K,H) trQ}ds + 2

∫ t

0
e2(λ−δ)s(Ys, g(s, Ys) dWs). (2.4)

Owing to the exponential martingale inequality, we have

P

{
ω: sup

06t6w

(∫ t

0
e2(λ−δ)s(Ys, g(s, Ys) dWs)

−
∫ t

0

u

2
e4(λ−δ)s tr[g(s, Ys)Qg(s, Ys)

∗] · (Ys, Ys) ds

)
> v

}
6 e−uv

for any positive constantsu, v andw. In particular, choosing

u = 2 v = logk w = k

2n
k = 1, 2, . . . , n = 1, 2, . . .

we then apply the well known Borel–Cantelli lemma to obtain the fact that there exists an
integerk0(n, ω) for almost allω ∈ � such that∫ t

0
(e2(λ−δ)sYs, g(s, Ys) dWs) 6 logk + trQ

∫ t

0
e4(λ−δ)s‖g(s, Ys)‖2

L(K,H)(Ys, Ys) ds
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for all 06 t 6 k/2n, k > k0(n, ω). Substituting this into (2.4) and using hypotheses of the
theorem, we see that almost certainly

e2(λ−δ)t (Yt , Yt ) 6
∫ t

0
e2(λ−δ)s{2(λ− δ)(Ys, Ys)

+2〈Ys,−νAYs〉 + ‖g(s, Ys)‖2
L(K,H) trQ} ds + 2 logk

+2 trQ
∫ t

0
e4(λ−δ)s‖g(s, Ys)‖2

L(K,H)(Ys, Ys) ds

6 2 logk +
∫ t

0
(2(λ− δ)− 2νλ0+ 2 trQ · ψ(s) · e−2δs) e2(λ−δ)s(Ys, Ys) ds

+ trQ
∫ t

0
ψ(s) · e−2δs ds.

So by Gronwall’s inequality, we derive that almost certainly

e2(λ−δ)t (Yt , Yt ) 6
(

2 logk + trQ
∫ t

0
ψ(s) · e−2δs ds

)
× exp

{∫ t

0
(2(λ− δ)− 2νλ0+ 2 trQ · ψ(s) · e−2δs) ds

}
(2.5)

for 06 t 6 k/2n, k > k0(n, ω).
On the other hand, for arbitraryε > 0 there exists a positive integerN and a random

integerk1 = k1(N, ω) such that ifk/2N 6 t 6 (k + 1)/2N , k > k1(N, ω) ∨ k0(N, ω) we
have ∣∣∣∣ k2N − t

∣∣∣∣ 6 ε
and, furthermore, this implies that there exists a positive constantM > 0 such that

log(e2(λ−δ)t (Yt , Yt )) 6 log[2 logk + trQ · t ·M] + 2(λ− δ)t − 2νλ0t

+2 trQ ·
∫ t

0
ψ(s) e−2δs ds

wherek/2N 6 t 6 (k + 1)/2N , k > k1(N, ω) ∨ k0(N, ω). Therefore

lim sup
t→∞

log( e2(λ−δ)t (Yt , Yt ))
t

6 2(λ− δ)− 2νλ0+O(ε).

Letting ε → 0, δ→ 0 gives

lim sup
t→∞

log( e2λt (Yt , Yt ))

t
6 2λ− 2νλ0.

Finally, we have

lim sup
t→∞

log |Yt |
t
= lim sup

t→∞
1

2

log( e2λt (Yt , Yt ))

t
− λ 6 −νλ0.

Now the proof is complete. �
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Theorem 2.2. Assume there exists a positive constantα > 0 such that:
(1) ‖g(t, y)‖2

L(K,H) 6 2α|y|2, (t, y) ∈ R+ × V ;
(2) νλ0 − α trQ > 0; whereλ0 = infy∈V (|∇y(x)|2/|y(x)|2) > 0. Then there exists a

pair of positive constantsM andγ such that

E|Yt (t0)|2 6 M e−γ (t−t0)E|Yt0|2 (2.6)

for all t0 > 0. In this case, we say equation (1.12) is the second momently stable. Moreover,
we have

lim sup
t→∞

log |Yt |
t

6 −νλ0− α trQ

2
a.s. (2.7)

In other words, equation (1.12) is also exponentially stable almost certainly.

Proof. First of all, by condition (2) we can findγ > 0 such that

2νλ0− 2α trQ− γ > 0.

We now claim that there existsC > 0 such that∫ ∞
t0

eγ sE|Ys(t0)|2 ds 6 C · eγ t0E|Yt0|2.

Indeed, It̂o’s formula and condition (1) imply that for anyλ > 0

eλtE|Yt |2 6 eλt0E|Yt0|2+
∫ t

t0

(λ− 2νλ0) eλsE|Ys |2 ds + trQ · E
∫ t

t0

eλs‖g(s, Ys)‖2
L(K,H) ds.

Hence, by virtue of condition (1), we deduce

E|Yt |2 6 e−λ(t−t0)E|Yt0|2+
∫ t

t0

(λ− 2νλ0+ 2α · trQ) e−λ(t−s)E|Ys |2 ds.

Thus, for anyT > t0 andγ > 0 satisfyingγ ∈ (0, (2νλ0− 2α trQ) ∧ λ), we have∫ T

t0

eγ tE|Yt |2 dt 6
∫ T

t0

eγ t−λ(t−t0)E|Yt0|2 dt + (λ− 2νλ0+ 2α · trQ)

×
∫ T

t0

eγ t
∫ t

t0

e−λ(t−s)E|Ys(t0)|2 ds dt

6 1

λ− γ eγ t0E|Yt0|2+
λ− 2νλ0+ 2α trQ

λ− γ
∫ T

t0

eγ sE|Ys(t0)|2 ds

which immediately implies that∫ T

t0

eγ tE|Yt |2 dt 6 ( eγ t0E|Yt0|2/λ− γ )
1− (λ− 2νλ0+ 2α trQ/λ− γ ) =

eγ t0E|Yt0|2
2νλ0− γ − 2α trQ

.

In a similar way, we can derive that for̃γ > 2νλ0− 2α trQ

eγ̃ tE|Yt |2 6 eγ̃ t0E|Yt0|2+
∫ t

t0

(γ̃ − 2νλ0+ 2α trQ) eγ̃ sE|Ys |2 ds

which, combined with the preceding results, immediately implies that there existsC(γ ) > 0
such that

eγ̃ tE|Yt |2 6 eγ̃ t0E|Yt0|2+ (γ̃ − 2νλ0+ 2α trQ)
∫ t

t0

e(γ̃−γ )s · eγ s · E|Ys |2 ds

6 eγ̃ t0E|Yt0|2+ (γ̃ − 2νλ0+ 2α trQ) · C(γ ) · eγ t0+(γ̃−γ )t · E|Yt0|2
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whereC(γ ) = 1/(2νλ0− γ − 2α trQ), that is,

E|Yt |2 6 E|Yt0|2( e−γ̃ (t−t0) + C(γ ) · (γ̃ − 2νλ0+ 2α trQ) e−γ (t−t0)) 6 M e−γ (t−t0)E|Yt0|2

whereM = 1+ C(γ ) · (γ̃ − 2νλ0+ 2α trQ) > 0.
Finally, we show that (2.6) implies (2.7), i.e. (2.6) implies the almost certain exponential

stability. To this end, we divide our proof into two steps.
Step 1.We claim that there exists a positive constantK0 <∞ such that

E

(
sup

t06t<∞
|Yt |2

)
6 K0E|Yt0|2.

Indeed, by virtue of It̂o’s formula,

|Yt |2 = |Yt0|2− 2ν
∫ t

t0

〈Ys, AYs〉 ds + 2
∫ t

t0

(Ys, g(s,Xs) dWs)

+
∫ t

t0

tr(g(s, Ys)Qg(s, Ys)
∗) ds

6 |Yt0|2− (2νλ0− 2α trQ)
∫ t

t0

|Ys |2 ds + 2
∫ t

t0

(Ys, g(s,Xs) dWs).

Hence, for arbitraryT > t0

E sup
t06t<T

|Yt |2 6 E|Yt0|2+ 2α trQ
∫ T

t0

E|Ys |2 ds + 2E sup
t06t<T

∣∣∣∣ ∫ t

t0

(Ys, g(s,Xs) dWs)

∣∣∣∣. (2.8)

But by virtue of the Burkholder–Davis–Gundy inequality, we easily obtain

2E sup
t06t<T

∣∣∣∣ ∫ t

t0

(Ys, g(s,Xs) dWs)

∣∣∣∣
6 6E

{∫ T

t0

|Ys |2 tr(g(s, Ys)Qg(s, Ys)
∗) ds

} 1
2

6 3E

{
2 sup
t06t6T

|Ys |
[ ∫ T

t0

tr(g(s, Ys)Qg(s, Ys)
∗) ds

] 1
2
}

6 3lE

{
sup
t06t6T

|Yt |2
}
+ 12l−1α trQ

∫ T

t0

E|Ys |2 ds.

If we take l = 1
6 and substitute into (2.8) we obtain, after using (2.6), that there exists

K0 > 0 such that

E

(
sup

t06t<∞
|Yt |2

)
6 K0E|Yt0|2.

Step 2.Following a similar argument, it easily follows that fort > N

|Yt |2 = |YN |2− 2ν
∫ t

N

〈Ys, AYs〉 ds + 2
∫ t

N

(Ys, g(s,Xs) dWs)

+
∫ t

N

tr(g(s, Ys)Qg(s, Ys)
∗) ds

6 |YN |2+ 2α trQ
∫ t

N

|Ys |2 ds + 2
∫ t

N

(Ys, g(s,Xs) dWs).
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Hence, letεN > 0 be arbitrary. Then

P

{
ω: sup

N6t6N+1
|Yt (t0)| > εN

}
6 P {|YN |2 > ε2

N/3} + P
{∫ N+1

N

|Yt |2 dt > ε2
N/6α trQ

}
+P

{
sup

N6t6N+1

∫ t

N

(Ys, g(s,Xs) dWs) > ε2
N/6

}
.

Now, using the consequences derived above,

P

{
sup

N6t6N+1

∫ t

N

(Ys, g(s,Xs) dWs) > ε2
N/6

}

6 36α trQε−2
N

{
E sup
N6t6N+1

|Yt (t0)|
}{∫ N+1

N

E|Yt |2 dt

} 1
2

6 k1E|Yt0|2 e−γN/2

ε2
N

.

If εN = k1 e−γNδ/4 where 0< δ < 1, the Borel–Cantelli lemma now implies that there are
N ′(ω) andM > 0 such that ifN > N ′(ω), then

sup
N6t6N+1

|Yt |2 6 M e−γNδ/2.

Consequently, lettingδ→ 1,

1

t
log |Yt (t0)| 6 1

(N − 1)+ t0

(
−1

4
γN

)
whenever(N − 1)+ t0 6 t 6 N + t0, N > N ′(ω) almost certainly. Therefore,

lim sup
t→∞

log |Yt |
t

6 −γ
4

a.s.

Furthermore, notice thatγ ∈ (0, 2νλ0 − 2α trQ) is arbitrary, (2.7) is derived easily by
letting γ tend to 2νλ0− 2α trQ. Now the proof is complete. �

As is well known, under some conditions such as stochastic bounded perturbation, the
supremeY ∗t = sup06s6t |Ys | of the solution may tend to infinity almost certainly and therefore
it is useful to establish upper bounds for the supremum. To the end, let us consider the
following extended stochastic equation,

Yt = y0+
∫ t

0
(−νT Ys + f (s, Ys)) ds +

∫ t

0
g(s, Ys) dWs (2.9)

which holds as an identity inV ′, whereT is a linear operator, which is in general unbounded,
defined on a dense linear subspaceD(T ) ⊂ V ⊂ H which has a self-adjoint extension, still
simply denoted byT , on V such thatT is a continuous linear operator fromV into V ′.
Yt ∈ V a.e. andWt is aK-valuedQ-Wiener process withW0 = 0 andf :R+ × V → V ′,
g : R+ × V → L(K, V ′) are two continuous, locally bounded mappings with suitable
regular hypotheses. Once again we still hopefully assume that equation (2.9) has a unique
global solution, defined in the obvious manner similar to definition 1.2, which is denoted
by Yt ∈ V a.e. Without loss of generality, we might as well assumeY0 = 0 for simplicity.

AssumingV (y, t) is aC2,1-positive function defined onH ×R+ such thatV ′y(y, t) ∈ V
for all y ∈ V , t ∈ R+, we define operatorsL andQ as follows fory ∈ V , t ∈ R+:

LV (y, t) = V ′t (y, t)+ 〈V ′y(y, t),−νTy + f (y, t)〉 + 1
2 tr[V ′′yy(y, t)(g ◦Q

1
2 )(g ◦Q 1

2 )∗]
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(2.10)

and

QV (y, t) = tr[V ′y ⊗ V ′y(y, t)(g ◦Q
1
2 )(g ◦Q 1

2 )∗]. (2.11)

Lemma 2.1. Let V (y, t) ∈ C2,1(H × R+;R+) such thatV ′y(y, t) ∈ V for y ∈ V , and
ψ1(t) andψ2(t) be two non-negative continuous functions. Letλ(t) ↑ +∞ be a positive,
increasing function. Assume that for ally ∈ V and t > 0 there exist positive constants
p > 0, M > 0, θ > 0, ν > 0, µ > 0 and positive functionξ(t) ↓ 0 such that

(1) |y|p · ξ(t)−1 = V (y, t), (y, t) ∈ V × R+;
(2) LV (y, t)+ ξ(t)QV (y, t) 6 ψ1(t)+ ψ2(t)V (y, t), (y, t) ∈ V × R+;
(3)

∞∑
k=1

1

λ(k)2
<∞ lim sup

k→∞

log logλ(k)

log logλ(k − 1)
6 θ <∞

(4)

lim sup
t→∞

log(ξ(t)
∫ t

0 ψ1(s) ds)

log logλ(t)
6 ν lim sup

t→∞

ξ(t)
∫ t

0 ψ2(s)ξ(s)
−1 ds

log logλ(t)
6 µ

lim sup
k→∞

ξ(k − 1)

ξ(k)
6 M <∞ k = 1, 2, . . . .

Then there exists a constant random variableC(ω) such that the solution of equation (2.9)
satisfies

Y ∗t 6 C(ω) · (logλ(t))(ν∨θ+µ)/p a.s.

whereY ∗t = sup06s6t |Ys |.
Proof. By Itô’s formula and the definition ofL andQ, we can derive

V (Yt , t) = V (Y0, 0)+
∫ t

0
LV (Ys, s)ds +

∫ t

0
〈V ′y(Ys, s), g(Ys, s)dWs〉. (2.12)

Due to the exponential martingale inequality, we have

P

{
ω: sup

06t6w

[ ∫ t

0
〈V ′y(Ys, s), g(Ys, s)dWs〉 −

∫ t

0

u

2
QV (Ys, s)ds

]
> v

}
6 e−uv

for any positive constantsu, v andw. In particular, choosing

u = 2ξ(k) v = ξ(k)−1 logλ(k) w = k k = 1, 2, . . .

we then apply the well known Borel–Cantelli lemma to obtain the fact that there exists an
integerk0(ω) for almost allω ∈ � such that∫ t

0
〈V ′y(Ys, s), g(Ys, s)dWs〉 6 ξ(k)−1 logλ(k)+ ξ(k)

∫ t

0
QV (Ys, s)ds

for all 0 6 t 6 k, k > k0. Substituting this into (2.12) and using hypotheses of the
lemma 2.1, we see that almost certainly

V (Yt , t) 6 ξ(k)−1 logλ(k)+
∫ t

0
LV (Ys, s)ds +

∫ t

0
ξ(k)QV (Ys, s)ds

6 ξ(k)−1 logλ(k)+
∫ t

0
LV (Ys, s)ds +

∫ t

0
ξ(s)QV (Ys, s)ds

6 ξ(k)−1 logλ(k)+
∫ t

0
(ψ1(s)+ ψ2(s)V (Ys, s))ds
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that is,

|Yt |p 6 ξ(t)ξ(k)−1 logλ(k)+ ξ(t)
∫ t

0
(ψ1(s)+ ψ2(s) · ξ(s)−1 · |Ys |p) ds.

By hypotheses of the lemma 2.1 and using Gronwall’s inequality, we derive that almost
certainly

|Yt |p 6
[
ξ(t)ξ(k)−1 logλ(k)+ ξ(t)

∫ t

0
ψ1(s) ds

]
· exp

(
ξ(t)

∫ t

0
ψ2(s)ξ(s)

−1 ds

)
for 06 t 6 k, k > k0(ω).

By conditions (3) and (4), for anyε > 0 there exists a random integerk1 = k1(ω) such
that if k − 16 t 6 k, k > k1 ∨ k0, we have

log |Yt |p 6 log[(M + ε) logλ(k)+ (logλ(t))(ν+ε)] + ξ(t)
∫ t

0
ψ2(s)ξ(s)

−1 ds

6 log[(M + ε)(logλ(t))(θ+ε) + (logλ(t))(ν+ε)] + (µ+ ε) log logλ(t)

which implies immediately that

lim sup
t→∞

log |Yt |p
log logλ(t)

6 (θ + ε) ∨ (ν + ε)+ µ+ ε a.s.

Letting ε → 0 and using lemma 6.3 of [18] gives

lim sup
t→∞

log(Y ∗t )
p

log logλ(t)
6 θ ∨ ν + µ a.s.

Finally, we have the fact that there exists a random variableC(ω) such that

Y ∗t 6 C(ω) · (logλ(t))(θ∨ν+µ)/p a.s.

The proof is complete. �

Next, we shall apply the preceding lemma 2.1 to our stochastic Burgers equation (1.12).
In particular, we have the following consequence.

Theorem 2.3. Suppose there exists a positiveM > 0 such that

‖g(t, y)‖L(K,H) 6 M t ∈ R+ y ∈ V
then the solution of equation (1.12) satisfies the fact that there exists a random variable
C(ω) such that

Y ∗t 6 C(ω) ·
√

log t a.s.

whereY ∗t = sup06s6t |Ys |.

Proof. Let V (t, v)(·) = eλt 〈v, ·〉2, where t > 0, v ∈ V and λ is some positive constant
fixed afterwards. It is easy to obtain the fact that for a solutionYt ∈ L a.s.

LV (t, Yt )(Yt )+ e−λtQV (t, Yt )(Yt )
= λ eλt 〈Yt , Yt 〉 + eλt 〈Yt ,−2νAYt + f (t, Yt (ω))〉 +M2 trQ eλt

+2M2 trQ eλt |Yt |2
6 λ eλt 〈Yt , Yt 〉 − 2ν〈∇Yt ,∇Yt 〉 eλt + 2M2 trQ|Yt |2 eλt |Yt |2+M2 trQ eλt

6 (λ− 2νλ0+ 2 trQ ·M2)V (t, Yt )(Yt )+M2 · trQ · eλt
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whereλ0 = infu∈V (|∇u(x)|2/|u(x)|2). Picking λ > 0 large enough, using lemma 2.1 and
the conditions of the theorem 2.3, we easily find that there exists a random variableC(ω)

such that

Y ∗t 6 C(ω) ·
√

log t a.s.

Now the proof is complete. �

3. Examples

In this section we shall give several examples to illustrate our results derived above.

Example 3.1. Let us first consider the following stochastic Burgers-type equation. Assume
ν > 0, λ > 0, u0(x) ∈ R and for t > 0, x ∈ (0, 1),

du(t, x) =
(
ν
∂2u(t, x)

∂2x
+ 1

2

∂

∂x
u2(t, x)

)
dt + (2t3+ 5t) e−2λt dBt(x)

u(t, 0) = u(t, 1) = 0 t > 0

u(0, x) = u0(x) ∈ V x ∈ [0, 1] (3.1)

whereBt(x) is anH -valued Wiener process with a bounded, continuous covariance function
q(x, y) with

∫ 1
0 |q(x, x)| dx 6 1 such that forv(x) ∈ H

(Qv)(x) =
∫ 1

0
q(x, y)v(y)dy.

In order to apply theorem 2.1, we note that for anyδ > 0

lim
t→∞

2t3+ 5t

eδt
= 0.

Therefore, applying theorem 2.1, we conclude that equation (3.1) is exponentially stable
almost certainly. Moreover, we have almost certainly

lim sup
t→∞

log |u(t)|
t

6 −νλ0 a.s.

whereλ0 = infy∈V (|∇y(x)|2/|y(x)|2).
Example 3.2. Consider the following stochastic Burgers-type equation. Assumeν > 0,
α > 0, u0 ∈ R and for t > 0, x ∈ (0, 1),

du(t, x) =
(
ν
∂2u(t, x)

∂2x
+ 1

2

∂

∂x
u2(t, x)

)
dt + αu(t, x)dBt(x)

u(t, 0) = u(t, 1) = 0 t > 0

u(0, x) = u0(x) ∈ V x ∈ [0, 1] (3.2)

where λ0 = infy∈V (|∇y(x)|2/|y(x)|2) and Bt(x) is anH -valued Wiener process with a
bounded continuous covarianceq(x, y), that is, there exists constantM > 0 such that
supx∈[0,1]|q(x, x)| = M <∞.

Hence, by virtue of theorem 2.2, we have the fact that, if 2νλ0 > α2M, equation (3.2)
is exponentially stable almost certainly. Moreover, we have almost certainly

lim sup
t→∞

log |u(t)|
t

6 −
(

2νλ0− α2M

4

)
a.s.

As is well known, under some conditions, such as stochastic bounded perturbation, the
solution of stochastic equation may tend to infinity almost certainly. The following example
establishes upper growth bounds for a class of stochastic Burgers equations.
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Example 3.3. Consider the following stochastic Burgers equation. Assumeν > 0, u0 ∈ R
and for t > 0, x ∈ (0, 1),

du(t, x) =
(
∂2u(t, x)

∂2x
+ ∂

∂x
u2(t, x)

)
dt + 2 dBt(x)

u(t, 0) = u(t, 1) = 0 t > 0

u(0, x) = u0x ∈ V x ∈ [0, 1] (3.3)

whereBt(x) is anH -valued Wiener process with a bounded continuous covarianceq(x, y),
that is, that there exists constantM > 0 such that|q(x, x)| 6 M.

Since, at the moment,

g(t, u) = 2

we have, by virtue of theorem 2.3, that there exists a positive random variableC(ω) such
that

u∗(t, ω) 6 C(ω)
√

log t

whereu∗(t, ω) = sup06s6t |u(s, ω)|.
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Paris, XI


