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Abstract. The aim of this paper is to investigate large time behaviour, i.e. stability and growth
bounds, of the solutions for a class of stochastic Burgers equations. The analysis is based on some
robustness analysis involved with an infinite-dimensional stochastic evolution equation. Various
sufficient conditions for a stochastic Burgers equation are obtained to ensure its asymptotic
properties. Lastly, several examples are given to illustrate our theory.

0. Introduction

An important role in fluid dynamics is played by the followiBgirgersequation, see Burgers
[4],
o,u(t,x) = vafxu(t, x) +u(t, x)0u(t, x) (0.2)

where u(z, x) is the velocity field andv is the viscosity. As Burgers emphasized in
the introduction of his book [4], this equation represents an extremely simplified model
describing the interaction of dissipative and nonlinear inertial terms in the motion of the
fluid. A clear discussion on the physical problems connected with Burgers equation can be
found in [4]. On the other hand, in some sense it is known, however, that the equation is not
a good model for turbulence. It does not display any chaotic phenomena; even when a force
is added to the right-hand side and all solutions converge to a unique stationary solution as
time goes to infinity. The situation, however, is quite different when the force is random.
In particular, a random perturbation may help to select interesting invariant measures.
Translational invariance is preserved when (0.1) is perturbed by additive stochastic processes
stationary in space and time. Several authors have indeed suggested using the stochastic
Burgers equation as a simple model for turbulence: Chandteak[5], Choi et al [6] and
Dah-Teng Jeng [11].

Roughly speaking, in this paper we hopefully consider the following stochastic evolution
equation forv > 0:

2
du(t, x) = (Uau(zt,x) + 1au2(t,x)> dr + g(¢, u(t, x)) dB,(x) t>0,x€e(01)
0°x 20x
u@, 0 =u(,1)=0 t>0
u(0, x) = up(x) x €[0,1] (0.2)
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whereup(x) is a certain given initial function an8, denotes the Gaussian process defined
over a certain probability spac&, F, F;, P), with continuous correlation function

E(B;(x), By(x") =t At'q(x,x") (0.3)

wherea A b = min{a, b}.

The existence, uniqueness and regularity of a sample solution of (0.2) were investigated
by Bertini et al [2], Brzezniak et al [3] and Da Prato and Gatarek [9]. In the meantime,
the asymptotic behaviour of the infinite-dimensional stochastic evolution equation was
considered by many authors. Concerning the stability of the stochastic evolution equation,
we should notice the fact that lots of authors mainly pay attention topthemoment
stability. In particular we mention Curtain [8], Haussmann [13], Ichikawa [14] and Liu [16]
among others. On the other hand, under a number of practical circumstances, we are more
concerned with the almost certain stability for a stochastic system. We should also mention
Mao’s work [17] on the almost certain stability of thedimensional stochastic differential
equation with respect to a semimartingale.

In this paper, we shall develop a Liapunov functional approach for almost certain
stability analysis, and growth bound criteria pertaining to the stochastic Burgers
equation (0.2). For simplicity, we shall concern ourselves with the one-dimensional
stochastic Burgers equation although it is possible to extend most results to the multi-
dimensional equation. Specifically, section 1 contains some mathematical preliminaries
for our purposes, such as an infinite-dimensional stochastic integral with respeag@+to a
Wiener process and the precise definition of the solution of the stochastic Burgers equation.
Section 2 contains the main results of the paper. Based on a basic robustness analysis,
the criteria for almost certain asymptotic stability of the stochastic Burgers equation are
obtained in theorem 2.1 and theorem 2.2. The growth rate estimates of unbounded solutions
to the stochastic equation are also established in theorem 2.3 when stability may be invalid.
Finally, section 3 is totally devoted to considering several examples which illustrate how to
apply our theory to practical stochastic Burgers equations.

1. Preliminaries

The purpose of this section is to introduce the Hilbert space techniques used to deal with
our stochastic Burgers equation. We use the idea from [10]. H.dte the closure of the
set{u € C§°([0, 1], R): u(0) = u(1) = 0} in the L? norm |u| = (u, u)%,

1
(u,v):/ u(x)v(x) dx. (1.1
0

V is the closure of the sdit € C5°([0, 1], R): u(0) = u(1) = O} in the norm|u| + [Ju|l,
where Jull = ((u, u))2,
du dv
o) =(—,—=]. 1.2
= (55 5) 12
Both H andV are Hilbert spaces with their scalar produgts), (-, -)+((-, -)), respectively.
We denote the self-adjoint extension of the operatarin H by A and the orthonormal
basis of its eigenfunctions with the corresponding eigenvalyess+oco by {e;}.
We denote the space dual Yoby V', with the duality extending the scalar product in
H. In general, we define the spacHs for r > 0 by

o
H’:{ueH:ZAgu§<oo} (1.3)
k=1
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whereu; = (u,e;) (S0 H = H®°, V = H?'). The elements of the dual spacés”
(V' = H™1) are characterized by

ulg—+ =Y A uf < oo (1.4)
k=1
whereu; = (e, u), and{(-, -) denotes the relation of duality between the spd¢esnd V',
so thatu = Y ;7 ; uxe, the limit being taken inH .
The operatorA can be extended to a continuous linear operator, still denoted,by
from V into V’ by (v, Au) = ((v, u)) for u, v € V. We also define

1 ov
b(u,v,z)=/ u(x)—x)z(x)dx = ((u, V)v, 2)
0 Bx

whenever the integrals make sense. Note thatufor,z € V we haveb(u,v,z) =
—b(u, z, v), henceb(u,v,v) = 0. We also have the following well known inequality
for b(u, v, z) and we list them here for reference:

|b(u, v, 2)| < cllullllvlliz]l (1.5
1b(u, v, 2)| < clulllv]l|Az] (1.6)
1b(u, v, 2)| < cllulllv]|Az] .7

for suitableu, v, z and constant. The inequality (1.5) allows us to define \&-valued
bilinear form B(u, v) by (z, B(u, v)) = b(u, v, 7).
Let us now introduce the following notations for the path spaces:

Ly =L%0,T; H)
Lr=L%0,T; HYNL?O,T;: V)NCO,T: H)
L= () Lr. (1.8)

T <00

Definition 1.1 Let K be a separable Hilbert space. A stochastic prodEss > 0, in
Hilbert spacekK is a Q-Wiener process defined q®, F, P) if:

(a) W, is a square integrable process an@, = 0 for all t > 0;

(b) Cov[W, — W,] = (r —s)Q, Q € L(K) is a non-negative nuclear operator;

(c) W, has continuous sample paths;

(d) W, has independent increments;
where L(K) = L(K, K) is the family of all bounded linear operators frokn into itself,
equipped with the usual operator norm topology. The oper&ois the incremental
covariance operator of the Wiener procégs

Let F,[W] be theo-field generated byV,, 0 < s < ¢; then W, is a martingale relative
to 7 [W.]. We have the following representation of a Wiener process.

Proposition 1.1 Let W, be a Wiener process iR with incremental covariance operator
Q, then

W, = Zl Bi(De; (1.9)

where{e;} is an orthonormal set of eigenvectors @f 8;(¢) are mutually independent real
Wiener processes with incremental covariange- 0, Qe; = Aje; and trQ = Y 21 A;.
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The stochastic integrajfé g(s)dW; is defined as follows. First we introduce the space
of integrands. For any Hilbert spadé, we denote by/(U) the space of all stochastic
processes

g(t,w): [0, T] x Q — L(K,U)

T
E( f I8Nk 0 dr) <00
0

where L(K, U) is the space consisting of all bounded linear operators fionnto U,
equipped with the usual operator norm topology, and fokadl K, g(¢)k is a U-valued
stochastic process measurable with respect to the filtrajon

The stochastic integrr;yf(; g(s)dW, € U is defined for allg € U/(U) by

such that

t n t
/ g(s)dW, = L? — lim Z/ 2(s)e; dBi (s). (1.10)
0 n—00 =1 0
Roughly speaking, in this paper we shall actually study a class of much more extended
stochastic evolution equations as follows fag 19 > O:
dy;(w) = [—UAY,(a)) + f(, Yt(w))] dr + g, Yi(w)) dw,. (1-11)
In particular, we give the following.
Definition 1.2 Let f(t,y) : R"* xV — V', gt,y) : Rt xV — L(K, H) be two
Borel measurable functions such that for ale R™ andy € V, (y, f(t,y)) = 0, and

g(t,Y,) e U(H). A Hilbert space-valued stochastic procésawith almost sure paths id
is a solutionof the stochastic Burgers equation (1.11) if, fog # > 0,

Yi(w) =Y, () +/ [—vAY (@) + f(s, Y(w))]ds +/ 8(s, Yy (w)) dW; (1.12)

o

holds as an identity irv’ (the first integral is understood in the sense of Bochner).

As a consequence, we are now in the position to formulate (0.2) as a stochastic evolution
equation in the Hilbert space’:

dY: = [-vAY, + f(, Y)]dr + (2, Y,) dW, (1.13)

where f (¢, Y,) = %(a/ax)Y,z(x) andg(t, y): Rt x V — H is a Borel measurable function
with g(z,Y,) € U(H). W, is an H-valued Wiener process with the covariance operator
such that for allv(x) € H

1
(Qv)(JC)=/0 q(x, y)v(y)dy.

2. The main results

In this section, we shall try to obtain our main results of the stochastic Burgers equation.
Owing to the fact that we are restricting ourselves to stability analysis, we assume that the
equation has a unique global solution which is denoted’l8¥,,), or Y (¢, Y;,).
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Theorem 2.1 Let Y;(w) be a global soluton of (1.12). Assume there exist a real function
¥(t) > 0 and a non-negative constant- 0 such that:

I8t Wz k.py < ¥ (1) e yeV,teR" (2.2)

wherev (¢) satisfies for any > 0

Then we have that the solution of equation (1.12) is exponentially stable almost certainly.
Moreover,

. log |y,
lim sup glY|

=00

whereio = infyey (IVy(x)?/[y(x)[?) > 0.

< —vhg as. (2.2)

Proof. For simplicity, we supposé&, = 0. For any$é > 0 small enough, we define a
continuous functional on the spa®g, V (v, 1)(-) = %9 (v, )2, wherer > 0, v € V and
(-, -y denotes the canonical pairing betwegrand V'. Using I©’s formula, we can derive
that

Ve, (Y, < / {20, — 8) 47D (e, ¥,)2 + 2807 (e Y, ) er, —vAY, + f (5, Yy))
0
+EC g (s, YO Z ik py tl(ei @ €) - 01} ds
+2/ eZ()L_s)X <eis Ys)(ei’ g(S, Yb) dWA) (23)
0

where {¢;} € V is the orthonormal basis of the eigenfunctions of the operdtowith
corresponding eigenvalugs 1 +oo. Taking account ofY;, € £ a.s., we derive almost
certainly

V(Y 0)(Y,) < / 201 — 8) P, |2 4+ 24D, —vAY, + f(s, Yi(0)))
0

t
+&0 g (s, YOIIZ k.1, tr Q}dls + 2 / A5y, (s, Y dW,).  (2.4)
0

Owing to the exponential martingale inequality, we have

P{a): sup (ft Ry, g(s, Yy) dW,)
0

o<r<w
t
- f %e““fﬁ” trlg (s, ¥;) Qg(s, Y)*] - (¥, mds) > v} e
0

for any positive constants, v andw. In particular, choosing

k
>
we then apply the well known Borel-Cantelli lemma to obtain the fact that there exists an
integerko(n, w) for almost allw € 2 such that

u=2 v =logk w

t t
/ (€*7Y,, g(s, Y,) dW,) < logk +tr Q / e g (s, YOUIZ k) (Vs Ys) ds
0 0
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forall 0 <t < k/2", k > ko(n, w). Substituting this into (2.4) and using hypotheses of the
theorem, we see that almost certainly

t
(¥, ;) < / 05201 — §)(Y,. Y))
0
+2(Y,, —vAY) + 1g(s. Y2k tr Q} ds + 2logk
t
+2trQ f e g (s, Y2 k) (Vs Yi) ds
0

t
< 2logk + / 2k — 8) — 2vrg+ 2trQ - Y (s) - € 2 0I5y, v,) ds
0

+tr Q/ V(s) - e 25 ds.
0

So by Gronwall's inequality, we derive that almost certainly
t

A9y, Y, < (2 logk +tr Q / V(s) e ds)
0

X exp{ /I(z(,\ —8) — Ao+ 2trQ - Y (s) - €2 ds} (2.5)
0

for0<t <k/2" k = ko(n, w).

On the other hand, for arbitrary > 0 there exists a positive integdf and a random
integerk; = k1(N, o) such that ifk/2¥ <t < (k+1)/2Y, k > ki(N, 0) V ko(N, w) we
have

k

ZiN—t

<€

and, furthermore, this implies that there exists a positive congtast O such that
log(€®*~9"(v,, Y,)) < log[2logk +tr Q - t - M] + 2(A — 8)t — 2vigt

+2trQ - / V(s)e 2 ds
0

wherek/2¥ <t < (k+1)/2V, k > k1(N, ) V ko(N, w). Therefore

(A—8)1
im SUIOIog(e2 (Y., Y))

t—00 t

<2 — 8) — 2vig + O(e).
Lettinge — 0,8 — 0 gives

lim sup

—>00

t
Iog(e”t(Y,, ) o _2uie,

Finally, we have

At

—>00 t

lim sup

—>00

log|Y,
y = A < —VvA.

Now the proof is complete. d
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Theorem 2.2 Assume there exists a positive constant 0 such that:
@) llgt. I k) < 20ly[2, (1,y) € R* x V;
(2) vio — atrQ > 0; whererg = infycy (|Vy(x)[?/|y(x)[®) > 0. Then there exists a
pair of positive constantd/ andy such that
ElY,(t)? < M eV TOEY,|? (2.6)
for all 7o > 0. In this case, we say equation (1.12) is the second momently stable. Moreover,
we have
. log Y, Ao —atr
lim sup glY:| g_v o—atrQ

t—00 t 2

as. (2.7)

In other words, equation (1.12) is also exponentially stable almost certainly.
Proof. First of all, by condition (2) we can fing > 0 such that

2vig—2atrQ —y > 0.

We now claim that there exist§ > 0 such that

/oo &E|Y,(10)|?ds < C - &PE|Y, |2

fo
Indeed, 16's formula and condition (1) imply that for any> 0
e EY, > < @PE[Y, [P+ /lu — 2vio) €Y E|Y,Pds +tr Q- E / &g (s, Y2k ) s
to fo

Hence, by virtue of condition (1), we deduce

E|Y,? < e ™ E|y, >+ /t(,\ — 2vAo+ 2u - tr Q) e M I EY % ds.

o

Thus, for anyT > 1o andy > 0 satisfyingy € (0, (2vio — 20 tr Q) A 1), we have

T T
/ erE|Y,|2dr</ @M By, 2df 4 (A — 2uh + 20 - tr Q)
fo

o

T t
x / e / e 1) E|Y,(10)|? ds dr
o Io

A —2vio+ 20tr Q
A=y

1 T
< 1 enpy s / & E|Y,(t0)|2ds
rA—y fo

which immediately implies that

(°E|Y,|°/% —y) _ &E|Y,,|?
1—(A—20hg+20trQ/A—y) 2vig—y —2atrQ’
In a similar way, we can derive that for > 2vig — 2a tr Q

T
f e'E|Y, 2 dr <
to

t
& E|Y,|? < e77’°E|Y,0|2+/ (7 — 2vig + 20 tr Q) € E|Y, | ds
fo

which, combined with the preceding results, immediately implies that there &Xigis> 0
such that

t
& E|Y, 12 < &PE|Y,|? + (J — 2vho + 2atr Q)/ e7 Vs . @S . E|Y,|?ds
fo

SEOEY 2+ (7 — 2vho +2atr Q) - C(y) - @071 E|y, |2
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whereC(y) = 1/(2vig — y — 20 tr Q), that is,
E|Y, > < E|Y,J2(e777 £ C(y) - (§ — 2vig+ 20 tr Q) e 770y < Me V0 E|Y, |2

whereM =1+ C(y) - (y —2vig+ 2 tr Q) > 0.

Finally, we show that (2.6) implies (2.7), i.e. (2.6) implies the almost certain exponential
stability. To this end, we divide our proof into two steps.

Step 1.We claim that there exists a positive const&ft< oo such that

E( sup |Y,|2) < KoE|Y,, %,
to<t<o0
Indeed, by virtue of i’s formula,
t t
V= ¥ =20 [ AV s+ 2 [ gts, X0 W)
to

fo

+ / tr(g(s. ¥,) Qg(s. ¥,)*) ds

fo

t t
< |Y,0|2 — (2vig — 2 tr Q)/ Y| ds + 2/ (Yy, g(s, X5) dWy).
Io o
Hence, for arbitranyl” > 1y

T
E sup |Y,|2<E|Y,0|2+2atrQ/ E|Y,|?ds + 2E sup
1o

tot<T tost<T

t
/ (Y5, g(s, X5) dWy)|.  (2.8)
fo
But by virtue of the Burkholder—Davis—Gundy inequality, we easily obtain

2E sup

to<t<T

/ (Y., g(s, X,) dW,)

fo

’ :
<6E{ / 1Y, 21r(g (s, ¥,) Qg s, m*)ds}

[T
[——

T
< 3E{2 sup IY.YI[/ tr(g(s, Ys) Qg(s, Yx)*)dsi|

to<t<T 1o
T
< BZE{ sup |Y,|2} +121—1atrQ/ E|Y,|? ds.
to<t<T fo

If we takel = % and substitute into (2.8) we obtain, after using (2.6), that there exists

Ko > 0 such that

E( Sup |Y[|2) < KOE|YI()|2'

to<t<o00
Step 2.Following a similar argument, it easily follows that for= N
1 t
1Y, 12 =Yy |- 21)/ (Y, AY,) ds + 2/ (Y5, g(s, X;) dWy)
N N
t
+ [ (e 10 0gts. vy
N

t t
< |YN|2+2atrQ/ |Ys|2ds+2/ (Y., g(s, X,) dW,).
N N
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Hence, letey > 0 be arbitrary. Then

N+1
P{w: sup |Y,(ro>|>eN}<P{|YN|2>efv/3}+P{/ |Yt|2dt>e,2v/6atrQ}

N<t<SN+1 N
t

+P{ sup (Ys, (s, X5) dWy) > eﬁ/6}~
N<t<N+1JN

Now, using the consequences derived above,

t
P{ sup | (Y, g(s, X,) dW,) > e,zv/G}
N<tSN+1JN

N+1 2
<36atrQe;,2{E sup |Y,(to)|}{/ E|Yt|2dt}
N

N<t<N+1

kiE|Y, |2 e vN/2
<

2
€N

If ey = kie7N/4 where 0< § < 1, the Borel-Cantelli lemma now implies that there are
N'(w) and M > 0 such that ifN > N'(w), then

sup Y2 < MevN2,

N<t<N+1
Consequently, letting — 1,
}|09|Yt(to)l < _ <—1VN>
t (N—-1+1 4
whenever(N — 1)+t <t < N + 1y, N > N'(w) almost certainly. Therefore,
. log|Y;| Y
Illznjoup ; < ~ as.
Furthermore, notice that € (0, 2vio — 2o tr Q) is arbitrary, (2.7) is derived easily by
letting y tend to 219 — 2atr 0. Now the proof is complete. O

As is well known, under some conditions such as stochastic bounded perturbation, the
supremer’; = sup,,|Y;| of the solution may tend to infinity almost certainly and therefore
it is useful to establish upper bounds for the supremum. To the end, let us consider the
following extended stochastic equation,

Y, = yo —l—/ (—vTY, + f(s,Y))ds —|—/ g(s, Yy) dw; (2.9)
0 0

which holds as an identity i/, whereT is a linear operator, which is in general unbounded,

defined on a dense linear subspd@@’) C V ¢ H which has a self-adjoint extension, still

simply denoted byl', on V such thatT is a continuous linear operator from into V’.

Y, € V a.e. andW, is a K-valued Q-Wiener process wittWo =0 and f: R x V — V/,

g Rt xV — L(K,V’) are two continuous, locally bounded mappings with suitable

regular hypotheses. Once again we still hopefully assume that equation (2.9) has a unique

global solution, defined in the obvious manner similar to definition 1.2, which is denoted

by Y, € V a.e. Without loss of generality, we might as well assurpe= 0 for simplicity.
AssumingV (y, 1) is aC?*-positive function defined o/ x R* such thatv}f(y, Hev

forall y e V, r € R, we define operators and Q as follows fory € V, t € R*:

LV(y.0) = V(. 0) + (V. 0), =Ty + f(y.0)) + 2tV (3. 1)(g 0 Q2)(g 0 Q7)"]
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(2.10)
and

QV(y.1n) =t[V,® V,(y.1)(g 0 Q2)(g 0 02)"]. (2.11)

Lemma 2.1 Let V(y,7) € C>'(H x R*; R") such thatV](y,1) € V for y € V, and
Y1(t) and ¥o(¢) be two non-negative continuous functions. Lét) 4 +oo be a positive,
increasing function. Assume that for alle V andt > O there exist positive constants
p>0,M=>0,0>0,v>0,u >0 and positive functiorg(z) | 0 such that

@ P -E@O =V (.0, (y.1) € V x RY;

Q@ LV, ) +E0QV(y, ) < Y1(t) + Y2V (y, 1), (y,1) € V x RT;

(3)

> iz < 00 lim supM <6 <00
— 1(k) r—oo lOglOgA(k — 1)
4)
t t -1

lim Sup|09($(t)fo V1(s) ds) < lim Supé(t)fo Va(s)E(s)~ ds <

{—00 loglogA () 00 loglogA(z)
Iimsupé(k_1)<M<oo k=12, ....

k—o00 g(k)

Then there exists a constant random variable) such that the solution of equation (2.9)
satisfies

Y < C(w) - (loga(t)¥votmie as.
whereY; = sup,,|Y;l.

Proof. By Itd’s formula and the definition of and Q, we can derive
t

V¥, t) =V, 0) +/
0

Due to the exponential martingale inequality, we have

P{w: sup [f (Vi(Yy,8), g(Yy, s) dWy) —/
0 : 0

o<r<w

1

LV (Y, s)ds +/ (Vy’(YS,s),g(Y;,s) dwy). (2.12)
0

“u

EQV(YS,S) ds:| > v} <e”

for any positive constants, v andw. In particular, choosing
u = 2£(k) v =&(k)"toga(k) w=k k=12, ...

we then apply the well known Borel-Cantelli lemma to obtain the fact that there exists an
integerko(w) for almost allw € © such that

/ (Vy(¥s,5), g(¥s, 5) dWy) < S(k)71|09k(k)+$(k)/ QV(Y;, 5)ds
0 ’ 0

for all 0 < 7 < k, k > ko. Substituting this into (2.12) and using hypotheses of the
lemma 2.1, we see that almost certainly

V¥, 1) <S(k)‘1|09/\(k)+/ LV(YS,S)ds+/ E(k)QV (Yy, s)ds
0 0
<g(k)—1log,\(k)+f LV(Ys,s)ds—i—/ E(s)QV (Y, s) ds
0 0

< &(k) "t log A (k) +/0 (Y1(s) + Y2()V (¥y, 5)) ds
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that is,

1V,17 < E@EKR) " Hlogak) + &(1) /0 (Ya(s) + Yrals) - £(s) 71 Y, |P) ds.

By hypotheses of the lemma 2.1 and using Gronwall’s inequality, we derive that almost
certainly

|Y,|"<[s(os(k)—llogx(kws(t) /O w1<s)ds]exp<§(r> /O w2<s>s(s)‘1ds)

for0<r <k, k> ko(w).
By conditions (3) and (4), for any > 0 there exists a random integler = k;(w) such
thatif k —1 <t <k, k> kyV kg, we have

log|Y;|” < log[(M + €) logA(k) + (log (1) +9] + &(1) f Ya(s)E(s)tds
0

< log[(M + €)(log (1)) “* + (log (1)) "*] + (1 + €) log loga(1)
which implies immediately that
P
lim SUDM
>0 lOQlOgA(?)
Letting e — 0 and using lemma 6.3 of [18] gives
14
lim Supw <
>0 lOQlOgA(?)
Finally, we have the fact that there exists a random variélgle) such that

Y < C(w) - (loga(r)?vrmie as.

SO+ vivt+e)+ute as.

VV+u as.

The proof is complete. O

Next, we shall apply the preceding lemma 2.1 to our stochastic Burgers equation (1.12).
In particular, we have the following consequence.

Theorem 2.3 Suppose there exists a positive > 0 such that

e Ve, <M te R yev
then the solution of equation (1.12) satisfies the fact that there exists a random variable
C(w) such that

Y < C(w) - /logr as.

whereY; = sup,,|Y;l.

Proof. Let V(z,v)(-) = €(v,-)?, wheretr > 0, v € V andx is some positive constant
fixed afterwards. It is easy to obtain the fact that for a solutipge £ a.s.
LV, Y)(X,) + eMQV(t, Y)(Y,)
=AY, Y,) + €Y, —20AY, + f(t, Y, (®))) + M*tr Q &'
+2M?*tr Q €M |Y,|?
AE(Y,, Y, — 20(VY,, VY,) € + 2M?tr Q|Y, 12 (Y, + M?tr Q €

<
<=2+ 2trQ - MHV (¢, YY) +M?-trQ - &
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where g = inf,cy (|Vu(x)|?/lu(x)|?). Pickingx > 0 large enough, using lemma 2.1 and
the conditions of the theorem 2.3, we easily find that there exists a random variable
such that

Y < C(w) - /logt as.
Now the proof is complete. O

3. Examples

In this section we shall give several examples to illustrate our results derived above.

Example 3.1 Let us first consider the following stochastic Burgers-type equation. Assume
v>0,1>0,ug(x) € Randforr >0, x € (0,1),

2
du(r, x) = (ua”(;x) + 19 2 x)) dr + (2% + 51) e % dB, (x)
0%x 20x
u,0) =u(,1) =0 t>0
u(0,x) =ug(x) e V x €[0,1] (3.2)

whereB, (x) is an H-valued Wiener process with a bounded, continuous covariance function
q(x, y) with [ |g(x, x)| dx < 1 such that fow(x) € H

1
(Qv)(X)=f0 q(x, y)v(y)dy.

In order to apply theorem 2.1, we note that for any 0

i 23 +50

tLoo edt -

Therefore, applying theorem 2.1, we conclude that equation (3.1) is exponentially stable
almost certainly. Moreover, we have almost certainly

log |u(1)]
t

0.

lim sup

=00

whereio = infyey (IVy(0)1?/1y(x) ).

< —vig as.

Example 3.2 Consider the following stochastic Burgers-type equation. Assume 0,
a>0,up€ Rand fort > 0,x € (0, 1),

2
du(t, x) = (ua”;(;xx) + ;;xuz(t,x)) dr + cu(r, x) dB, (x)
u,0) =u(,1) =0 t>0
u(0,x) =ug(x) e V x €[0,1] 3.2)

where Ag = infyev(|Vy(x)|2/|y(x)|2) and B,(x) is an H-valued Wiener process with a
bounded continuous covariang€x, y), that is, there exists constaM > 0 such that
Sug(e[o.l]|q(x,x)| =M < o0.

Hence, by virtue of theorem 2.2, we have the fact thatpife2> «?M, equation (3.2)
is exponentially stable almost certainly. Moreover, we have almost certainly

log |u(t 2vig — a’M
lim sup g|;4()|<_<v0 * ) as.

—00 4
As is well known, under some conditions, such as stochastic bounded perturbation, the
solution of stochastic equation may tend to infinity almost certainly. The following example
establishes upper growth bounds for a class of stochastic Burgers equations.
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Example 3.3 Consider the following stochastic Burgers equation. Assume0, ug € R
and fort > 0, x € (0, 1),

2
du(t, x) = (3”(2”) + L, x)> dr + 2dB, (x)
0%x dax
u@,0) =u(,1)=0 t>0
u,x) =upx €V x €[0,1] 3.3)

where B, (x) is an H-valued Wiener process with a bounded continuous covariatcey),
that is, that there exists constamt > 0 such thatq(x, x)| < M.
Since, at the moment,

gt,u)y=2

we have, by virtue of theorem 2.3, that there exists a positive random vagigblesuch
that

u*(t, w) < C(w)/logr

whereu*(t, ) = SUR ., lu(s, w)].
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